Slope Calculator

This calculator determines the slope of a line, also known as the gradient. You can calculate the slope from two points or from the standard form of a line equation.

Your Result

Select a method and enter your values to calculate the slope.

What is the Slope of a Line?

The slope of a line is a number that measures its "steepness" or "inclination." It is often denoted by the letter m. In simple terms, the slope represents the rate of change in the vertical direction (the "rise") for every unit of change in the horizontal direction (the "run"). A higher slope value indicates a steeper line.

Slope Formulas

There are several ways to find the slope of a line, depending on the information you have. Our calculator supports the two most common methods.

1. Slope from Two Points (Rise over Run)

If you know the coordinates of two points on a line, (x₁, y₁) and (x₂, y₂), you can calculate the slope using the rise-over-run formula. This is the most fundamental way to understand and calculate slope.

m = (y₂ - y₁) / (x₂ - x₁) = Rise / Run

The "rise" is the vertical distance between the two points (y₂ - y₁), and the "run" is the horizontal distance (x₂ - x₁). If you also need to find the distance between these two points, you can use our Distance Calculator.

2. Slope from a Line Equation

If you have the equation of a line, you can find its slope without needing any points. The method depends on the form of the equation. This calculator uses the standard form:

Standard Form: Ax + By = C

For an equation in this form, the slope can be found directly from the coefficients A and B.

m = -A / B

Note that if B=0, the line is vertical (e.g., 2x = 5), and the slope is undefined. If A=0, the line is horizontal (e.g., 3y = 9), and the slope is 0. If you need to solve for x or y, our Equation Solver can be a useful tool.

Real-World Applications of Slope

The concept of slope is fundamental not just in mathematics but in many other fields:

Understanding slope provides a powerful way to describe relationships and rates of change, making it one of the most important concepts in all of mathematics.